TALLER 8 DE NOVIEMBRE DE 2013
Realice una presentación de Power Point de diez diapositivas donde exponga las funciones, ventajas y desventajas de Twitter, realizar un cuadro comparativo con otras redes sociales.
Realice la lectura detenidamente y con la información realice un mapa conceptual en su cuaderno.
Realice una presentación de Power Point de diez diapositivas donde exponga las funciones, ventajas y desventajas de Twitter, realizar un cuadro comparativo con otras redes sociales.
Realice la lectura detenidamente y con la información realice un mapa conceptual en su cuaderno.
Los nuevos desafíos exigen nuevas tecnologías para enfrentarlos. Ell Consejo de la Agenda Mundial sobre Tecnologías Emergentes, del Foro Económico Mundial, identifica aquí las 10 principales tendencias tecnológicas más prometedoras que pueden contribuir a lograr un desarrollo sostenible en las próximas décadas a medida que la población mundial y las demandas materiales impuestas al medio ambiente continúan creciendo con rapidez. Se trata de tecnologías que, según considera el Consejo, han logrado avances en su desarrollo y se aproximan al despliegue en gran escala.
La tecnología inalámbrica puede suministrar ahora electricidad a vehículos en movimiento. En los coches eléctricos de la próxima generación hay conjuntos de bobinas de toma bajo el piso del vehículo que reciben electricidad a distancia a través de un campo electromagnético transmitido por cables instalados bajo la carretera. La corriente carga asimismo una batería a bordo utilizada para propulsar el vehículo cuando está fuera del alcance del campo. Dado que la electricidad proviene de una fuente externa, estos vehículos sólo necesitan la quinta parte de la capacidad de la batería de un coche eléctrico estándar y pueden registrar una eficiencia en la transmisión superior al 80%. En Seúl, Corea del Sur, se están sometiendo a prueba vehículos eléctricos en línea.
La impresión tridimensional permite crear estructuras sólidas en base a un archivo informático digital, con la posibilidad de revolucionar los aspectos económicos de la fabricación si se pueden imprimir objetos a distancia en la casa o en la oficina. En este proceso se depositan capas de material una sobre otra a fin de crear estructuras autónomas de abajo arriba. Los planos preparados en base a diseños con ayuda de computadora se cortan en secciones transversales a fin de crear plantillas para imprimir, permitiendo que se usen objetos creados virtualmente como modelos para “copias impresas” hechas de plástico, aleaciones de metales u otros materiales.
Una de las características que definen a los organismos vivos es su capacidad inherente de reparar daños físicos. Una tendencia creciente en la biomimética es la creación de materiales estructurales no vivos que también tienen la capacidad de autorregenerarse cuando se cortan, desgarran o fisuran. Los materiales que se autorregeneran y que reparan daños sin la intervención humana externa podrían prolongar la vida útil de bienes manufacturados y reducir la demanda de materias primas, además de mejorar la seguridad inherente de materiales utilizados en la construcción o como elementos constituyentes de los fuselajes de aeronaves.
La escasez de agua es un problema ecológico que se agrava en muchas partes del mundo debido a la competencia que presentan las demandas de la agricultura, las ciudades y otros usos humanos. En aquellos casos en que el agua dulce se ha utilizado excesivamente o agotado, la desalinización de agua de mar ofrece volúmenes de agua casi ilimitados pero con un gasto considerable de energía – principalmente de combustibles fósiles – para accionar sistemas de evaporación o de ósmosis inversa. Hay tecnologías emergentes que ofrecen la posibilidad de lograr una eficiencia energética considerablemente superior en la desalinización o purificación de aguas residuales, reduciendo potencialmente el consumo de energía en un 50% o más. Técnicas como la ósmosis directa pueden mejorar incluso más la eficiencia utilizando energía calorífica de bajo nivel proveniente de la producción de energía térmica o de calor renovable generado por instalaciones solares térmicas y geotérmicas.
Las tecnologías largamente prometidas para la captura y el secuestro subterráneo de dióxido de carbono no han demostrado aún ser comercialmente viables, ni siquiera a escala de una sola central eléctrica grande. Las nuevas tecnologías que convierten el CO2 no deseado en bienes comercializables pueden resolver potencialmente las deficiencias económicas y energéticas de las estrategias tradicionales de captura y secuestro de carbono. Uno de los enfoques más prometedores utiliza bacterias fotosintéticas creadas mediante tecnología biológica para convertir CO2 residual en combustibles líquidos o sustancias químicas, utilizando sistemas modulares solares de conversión de bajo costo. Se considera que habrá sistemas individuales con una extensión de cientos de acres dentro de dos años. Al ser de 10 a 100 veces más productivos por unidad de superficie terrestre, estos sistemas podrían superar una de las principales limitaciones medioambientales a los biocombustibles en base a materias primas agrícolas o de algas, y suministrar combustibles más bajos en carbono para automóviles, aeronaves u otros grandes usuarios de combustibles líquidos.
Incluso en los países desarrollados, millones de personas padecen desnutrición debido a deficiencias de nutrientes en su alimentación. Ahora hay técnicas genómicas modernas que pueden determinar a nivel de la secuencia genética el inmenso número de proteínas naturalmente consumidas que son importantes en la alimentación humana. Las proteínas identificadas podrían tener ventajas en comparación con los suplementos proteicos habituales ya que pueden suministrar un mayor porcentaje de aminoácidos esenciales y presentan mejor solubilidad, sabor, textura y características nutricionales. La producción en gran escala de proteínas puras para la dieta humana en base a la aplicación de biotecnología a la nutrición molecular puede representar beneficios para la salud, por ejemplo, desarrollo muscular, manejo de la diabetes o disminución de la obesidad.
El uso cada vez más difundido de sensores que permiten respuestas frecuentemente pasivas a estímulos externos continuará cambiando la forma en que respondemos al entorno, especialmente en la esfera de la salud. Cabe citar como ejemplos los sensores que monitorizan de manera continua funciones del cuerpo humano – como la frecuencia cardíaca, el oxígeno en la sangre y la glucemia – y, de ser necesario, activan una respuesta médica como el suministro de insulina. Los adelantos logrados se basan en la comunicación inalámbrica entre dispositivos, las tecnologías de detección de bajo consumo energético y, a veces, el aprovechamiento activo de la energía. Otro ejemplo es la detección de vehículo a vehículo, que mejora la seguridad vial.
Los fármacos que pueden administrarse con precisión a nivel molecular dentro o alrededor de una célula afectada pueden brindar oportunidades sin precedentes de tratamientos más eficaces, reduciendo al mismo tiempo efectos secundarios adversos. Las nanopartículas dirigidas que se adhieren al tejido afectado facilitan la administración a microescala de compuestos terapéuticos potentes, minimizando al mismo tiempo su impacto sobre el tejido sano, y están avanzando en ensayos médicos. Después de casi una década de investigaciones, estos nuevos enfoques presentan finalmente signos de utilidad clínica.
La electrónica orgánica – un tipo de electrónica impresa – es el uso de materiales orgánicos como polímeros para crear circuitos y dispositivos electrónicos. A diferencia de los semiconductores tradicionales (a base de silicio) que se fabrican mediante costosas técnicas fotolitográficas, la electrónica orgánica se puede imprimir con procesos de bajo costo y a escala regulable como la impresión mediante chorro de tinta, característica que hace que sean muy baratos en comparación con los dispositivos electrónicos tradicionales, tanto en términos de costo por dispositivo como de bienes de capital requeridos para producirlos. Si bien es poco probable que la electrónica orgánica compita actualmente con el silicio en cuanto a velocidad y densidad, presenta la posibilidad de representar una ventaja importante en cuanto a costo y versatilidad. El costo de los colectores fotovoltaicos solares impresos de producción en gran escala, por ejemplo, podría acelerar la transición a la energía renovable.
La corriente que pasa una sola vez por los reactores nucleares utiliza sólo el 1% de la energía potencial disponible en el uranio, dejando el resto contaminado radiactivamente como “desechos nucleares”. Si bien el desafío técnico que presenta la eliminación geológica es manejable, el desafío político de los desechos nucleares limita en gran medida el interés presentado por esta tecnología energética de cero carbono y escala muy regulable. El reciclaje de combustible agotado y la reproducción de uranio 238 como nuevo material fisible – denominado Nuclear 2.0 – prolongarían durante siglos los recursos de uranio ya extraídos, reduciendo considerablemente al mismo tiempo el volumen y la toxicidad a largo plazo de los desechos, cuya radiactividad disminuiría por debajo del nivel del mineral de uranio original a una escala de siglos en vez de milenios. Esto reduce en gran medida el reto de la eliminación geológica (y hasta cabría decir que la tornaría innecesaria) y hace que los desechos nucleares sean un problema medioambiental de menor importancia en comparación con los desechos peligrosos producidos por otras industrias. En varios países se están desplegando tecnologías de la cuarta generación – como los reactores rápidos enfriados por metal líquido – ofrecidas por empresas de ingeniería nuclear arraigadas.
Esta lista ha sido preparada por el Consejo de la Agenda Mundial sobre Tecnologías Emergentes, del Foro Económico Mundial, cuyo actual presidente es David King. Para una lista completa de los miembros del Consejo, ver aquí
Imagen: diseños creados por medio de la impresión 3D en Leuven REUTERS/Yves Herman
ACTIVIDAD 16 DE AGOSTO:
a. Con base a la información abajo referenciada, responde las siguientes preguntas en tu cuaderno.
PREGUNTAS
1. Que significa una topologia de red?
2. Cuantos computadores tiene una topologia punto a punto? Explique este tipo de red.
3. Que es una red Wan?
4. Explique la topología de bus, estrella y árbol.
6. Realice un dibujo de cada una de las topologias de red.
b. Configure una presentación en power point donde presente una portada en la diapositiva uno, en la diapositiva dos un video descargado acerca de redes de computadores.
TOPOLOGÍA DE REDES
Las topologías más corrientes para organizar las computadoras de una red son las de punto a punto, de bus, en estrella y en anillo. La topología de punta a punta es la más sencilla, y está formada por dos ordenadores conectados entre sí. La topología de bus consta de una única conexión a la que están unidos varios ordenadores. Todas las computadoras unidas a esta conexión única reciben todas las señales transmitidas por cualquier computadora conectada. La topología en estrella conecta varios ordenadores con un elemento dispositivo central llamado hub. El hub puede ser pasivo y transmitir cualquier entrada recibida a todos los ordenadores —de forma semejante a la topología de bus— o ser activo, en cuyo caso envía selectivamente las entradas a ordenadores de destino determinados. La topología en anillo utiliza conexiones múltiples para formar un círculo de computadoras. Cada conexión transporta información en un único sentido. La información avanza por el anillo de forma secuencial desde su origen hasta su destino.
Las redes de área local (LAN, siglas en inglés), que conectan ordenadores separados por distancias reducidas, por ejemplo en una oficina o un campus universitario, suelen usar topologías de bus, en estrella o en anillo. Las redes de área amplia (WAN, siglas en inglés), que conectan equipos distantes situados en puntos alejados de un mismo país o en países diferentes, emplean a menudo líneas telefónicas especiales arrendadas como conexiones de punto a punto.
Cuando hablamos de topología de una red, hablamos de su configuración. Esta configuración recoge tres campos: físico, eléctrico y lógico. El nivel físico y eléctrico se puede entender como la configuración del cableado entre máquinas o dispositivos de control o conmutación. Cuando hablamos de la configuración lógica tenemos que pensar en como se trata la información dentro de nuestra red, como se dirige de un sitio a otro o como la recoge cada estación.
Así pues, para ver más claro como se pueden configurar las redes vamos a explicar de manera sencilla cada una de las posibles formas que pueden tomar.
Entre los principales tipos de Topologías físicas tenemos:
Topología de BUS / Linear Bus
Consiste en un cable con un terminador en cada extremo del que se cuelgan todos loes elementos de una red. Todos los Nodos de la Red están unidos a este cable. Este cable recibe el nombre de “Backbone Cable”. Tanto Ethernet como LocalTalk pueden utilizar esta topología.
En esta topología, los elementos que constituyen la red se disponen linealmente, es decir, en serie y conectados por medio de un cable; el bus. Las tramas de información emitidas por un nodo (terminal o servidor) se propagan por todo el bus(en ambas direcciones), alcanzado a todos los demás nodos. Cada nodo de la red se debe encargar de reconocer la información que recorre el bus, para así determinar cual es la que le corresponde, la destinada a él.
Es el tipo de instalación más sencillo y un fallo en un nodo no provoca la caída del sistema de la red. Por otra parte, una ruptura del bus es difícil de localizar(dependiendo de la longitud del cable y el número de terminales conectados a él) y provoca la inutilidad de todo el sistema.
Como ejemplo más conocido de esta topología, encontramos la red Ethernet de Xerox. El método de acceso utilizado es el CSMA/CD, método que gestiona el acceso al bus por parte de los terminales y que por medio de un algoritmo resuelve los conflictos causados en las colisiones de información. Cuando un nodo desea iniciar una transmisión, debe en primer lugar escuchar el medio para saber si está ocupado, debiendo esperar en caso afirmativo hasta que quede libre. Si se llega a producir una colisión, las estaciones reiniciarán cada una su transmisión, pero transcurrido un tiempo aleatorio distinto para cada estación. Esta es una breve descripción del protocolo de acceso CSMA/CD, pues actualmente se encuentran implementadas cantidad de variantes de dicho método con sus respectivas peculiaridades. El bus es la parte básica para la construcción de redes Ethernet y generalmente consiste de algunos segmentos de bus unidos ya sea por razones geográficas, administrativas u otras.
Ventajas de la topología de BUS:
- Es Más fácil conectar nuevos nodos a la red
- Requiere menos cable que una topología estrella.
Desventajas de la topología de BUS:
- Toda la red se caería se hubiera una ruptura en el cable principal.
- Se requiere terminadores.
- Es difícil detectar el origen de un problema cuando toda la red cae.
- No se debe utilizar como única solución en un gran edificio.
Topología de Estrella / Star
Es una topología estrella todos y cada uno de los nodos de la red, estos se conectan a un concentrador o hub.
Los datos es estas redes fluyen del emisor hasta el concentrador, este realiza todas las funciones de la red, además actúa como amplificador de los datos.
Los datos es estas redes fluyen del emisor hasta el concentrador, este realiza todas las funciones de la red, además actúa como amplificador de los datos.
Todos los elementos de la red se encuentran conectados directamente mediante un enlace punto a punto al nodo central de la red, quien se encarga de gestionar las transmisiones de información por toda la estrella. Evidentemente, todas las tramas de información que circulen por la red deben pasar por el nodo principal, con lo cual un fallo en él provoca la caída de todo el sistema. Por otra parte, un fallo en un determinado cable sólo afecta al nodo asociado a él; si bien esta topología obliga a disponer de un cable propio para cada terminal adicional de la red. La topología de Estrella es una buena elección siempre que se tenga varias unidades dependientes de un procesador, esta es la situación de una típica mainframe, donde el personal requiere estar accesando frecuentemente esta computadora. En este caso, todos los cables están conectados hacia un solo sitio, esto es, un panel central.
Equipo como unidades de multiplexaje, concentradores y pares de cables solo reducen los requerimientos de cableado, sin eliminarlos y produce alguna economía para esta topología. Resulta económico la instalación de un nodo cuando se tiene bien planeado su establecimiento, ya que este requiere de una cable desde el panel central, hasta el lugar donde se desea instalarlo.
Ventajas de la Topología Estrella:
- Gran facilidHad de instalación
- Posibilidad de desconectar elementos de red sin causar problemas.
- Facilidad para la detección de fallo y su reparación.
- Inconvenientes de la Topología de Estrella.
- Requiere más cable que la topología de BUS.
- Un fallo en el concentrador provoca el aislamiento de todos los nodos a él conectados.
- Se han de comprar hubs o concentradores.
Topología de Estrella Cableada / Star-Wired Ring
Físicamente parece una topología estrella pero el tipo de concentrador utilizado, la MAU se encarga de interconectar internamente la red en forma de anillo.
Esta tipología es la que se utiliza en redes Token ring
Esta tipología es la que se utiliza en redes Token ring
Topología de Arbol / Tree
La topología de árbol combina características de la topología de estrella con la BUS. Consiste en un conjunto de subredes estrella conectadas a un BUS. Esta topología facilita el crecimiento de la red.
Esta estructura de red se utiliza en aplicaciones de televisión por cable, sobre la cual podrían basarse las futuras estructuras de redes que alcancen los hogares. También se ha utilizado en aplicaciones de redes locales analógicas de banda ancha.
Ventajas de la Topología de Arbol:
- Cableado punto a punto para segmentos individuales.
- Soportado por multitud de vendedores de software y de hardware.
Desventajas de la Topología de Arbol:
- La medida de cada segmento viene determinada por el tipo de cable utilizado.
- Si se viene abajo el segmento principal todo el segmento se viene abajo con él.
- Es más difícil su configuración.
Resumen topología físicas:
Cableado
Protocolo
Bus
Ethernet
Local Talk
Estrella
Par Trenzado
Estrella en Anillo
Token Ring
Arbol
Coaxial
Fibra Optica
Cableado
Protocolo
Bus
Ethernet
Local Talk
Estrella
Par Trenzado
Estrella en Anillo
Token Ring
Arbol
Coaxial
Fibra Optica
Topología de Anillo
Los nodos de la red se disponen en un anillo cerrado conectados a él mediante enlaces punto a punto. La información describe una trayectoria circular en una única dirección y el nodo principal es quien gestiona conflictos entre nodos al evitar la colisión de tramas de información. En este tipo de topología, un fallo en un nodo afecta a toda la red aunque actualmente hay tecnologías que permiten mediante unos conectores especiales, la desconexión del nodo averiado para que el sistema pueda seguir funcionando. La topología de anillo esta diseñada como una arquitectura circular, con cada nodo conectado directamente a otros dos nodos. Toda la información de la red pasa a través de cada nodo hasta que es tomado por el nodo apropiado. Este esquema de cableado muestra alguna economía respecto al de estrella. El anillo es fácilmente expandido para conectar mas nodos, aunque en este proceso interrumpe la operación de la red mientras se instala el nuevo nodo. Así también, el movimiento físico de un nodo requiere de dos pasos separados: desconectar para remover el nodo y otra vez reinstalar el nodo en su nuevo lugar.
Combinadas
Cuando se estudia la red desde el punto de vista puramente físico aparecen las topologías combinadas.
Anillo en estrella
Esta topología se utiliza con el fin de facilitar la administración de la red. Físicamente, la red es una estrella centralizada en un concentrador, mientras que a nivel lógico, la red es un anillo.
Bus en estrella
El fin es igual a la topología anterior. En este caso la red es un bus que se cablea físicamente como una estrella por medio de concentradores.
Estrella jerárquica
Esta estructura de cableado se utiliza en la mayor parte de las redes locales actuales, por medio de concentradores dispuestos en cascada para formar una red jerárquica.
La topologia de una red de cable coaxial es una linea, una cadena de Computadores unidos a un único cable mediante unas piezas en forma de T que salen de éste. Si el cable se rompe se interrumpe la comunicación en toda la red, lo cual no ocurre si lo que se ha desconectado es sólo el extremo de laT que une al computador con el cable, en cuyo caso sólo ese Computador pierde la comunicación con la red.
La topologia de una red de cable de par trenzado es una estrella cuyo centro es el hub, del cual parte un cable (que como explique medira menos de 100 metros de largo para cada Computador ). Cuando unos de estos cables se rompe, la comunicación sólo queda interrumpida entre ese Computador y la red, no afectando al resto.
La topologia de una red de cable de par trenzado es una estrella cuyo centro es el hub, del cual parte un cable (que como explique medira menos de 100 metros de largo para cada Computador ). Cuando unos de estos cables se rompe, la comunicación sólo queda interrumpida entre ese Computador y la red, no afectando al resto.
No hay comentarios:
Publicar un comentario